
kaze vst
cepstral impulse resynthesis build by xoxos

section I: user notes

 The cepstrum is conceived as a spectrum of a spectrum, being produced by fourier analysis of the log10 magnitude of a
fourier spectral analysis. It conveniently divides resonances from source, placing them in the lower and upper halves of the
cepstrum, described as "deconvolution of the source and filter".

 Kaze creates pitched and unpitched oscillators from the filter. This method provides latency free, efficient resynthesis
with continuous, recallable, instantaneous specification of pitch, phase, spectral shift and pitched/noise signal balance. The
limitation of this impulse resynthesis method is that it produces regular harmonics, making it more successful in emulative
uses for voice, brass and strings rather than sources with inharmonic or missing partials such as clarinet and bells. Creative
use includes turning a sample into a scannable oscillator at constant pitch.

 Cepstral vernacular reverses the first part of signal processing terms, eg. quefrency, liftering and alanysis. The lifter
parameter specifies the separation of filter and source. Lower values have less spectral resolution, higher values start to
bias the resulting spectral contour with the source.

 Spectra of the wavefile are taken at 128 periodic points, producing better resolution with shorter files. The pitched
oscillator crossfades between antialiased impulses. The unpitched oscillator uses tables of 16384 samples, which would
repeat about 2.69 times a second at 44.1kHz with no spectral shift. This may produce some overt repeating but its very
computationally efficient.

 This platform has two modes - with noise turned off, only the pitched oscillator is heard. With noise selected, playback
crossfades between pitched and unpitched oscillators automatically. The signal may be mixed entirely to noise, producing
eg. whispered vocals.

 Preparation of each frame requires four or five fourier operations, depending on if noise is opted. A total of 128 frames
means some cpu lock up is expected during resynthesis (some part of a second on my single core). This occurs when noise
is turned on or off, when the lifter parameter is moved (eg. don't drag it slowly), and when the wavefile is loaded, which
also takes a minute. These parameters are all grouped tightly on the user interface. In use its worth exploring the range of
liftering settings but it is not recommended as a performance parameter.

section II: build notes

 Kaze is the product of a sustained minimal dev aesthete. What some may call "cheap and cheerful" is effective enough
and runs on my single core DAW.

 Concerning development, I note that this method was developed in the 60s for seizmography. Perhaps the first time I
heard it used for audio was a vocal demonstration by Kurzweil in the 90s. Despite being aware of the explicit application of
cepstral processing for formant shifting (I released a time domain vst 'smoky joe' in 2004) it was not until 2014 that public
expression of the method had passed from academia to casual discussion, wherein a post specified, "you just fft the log10
spectrum". I was so angry that no one had chosen to reveal it in such sensible terms that it took me five years to have a
mess with it.

 A weekend sunday I knocked together a windows app where I could satisfactorily reconstruct the time signal after
cepstral analysis. This last weekend I started from blank and wrote the dsp engine in a SynthEdit module. Two days and a
morning start to finish. And then maybe four hours to skin and wrap it in my prefab SynthEdit architecture.

 The cepstral impulse based oscillator comes from Julius Smith III's commuted synthesis example which demonstrates it
mixed with filtered noise for efficient violin resynthesis. Using tables for the unpitched/noise component avoids more
intensive processing. Initially I intended to use DPW antialiasing for the tables, but I discerned, its noise. Its unlikely to
result in audible aliasing in most applications.

 With the exception of some parameter updating, this is the actual process loop for the impulse oscillator:

register int osc;
register float d;
register float p;
float o = 0.f; float o2 = 0.f;

float fd = *in4 * 128.f; while (fd < 0.f) fd += 128.f; while (fd >= 128.f) fd -= 128.f;
unsigned char page = fd; fd -= (float)page;
unsigned char page2 = (page + 1) & 127;

phase += *in3 - pb; pb = *in3; while (phase < 0.f) phase += 1.f;
while (phase >= 1.f) phase -= 1.f;
float t = iw * shift;
p = phase * t;

osc = (int)p;
unsigned char limit = 12;
while (osc < nd2 && (limit & 8)) {

d = p - (float)osc;
o += ci0[page][osc] + d * (ci0[page][osc+1] - ci0[page][osc]);
o2 += ci0[page2][osc] + d * (ci0[page2][osc+1] - ci0[page2][osc]);
p += t; osc = (int)p; limit--;

}
o += fd * (o2 - o);

t = 0;
if (phase + w > 1.f) { // transition point aa

t = 1.f - (1.f - phase) * iw; t *= o - b0;}
else if (phase < w) {

t = 1.f - phase * iw; t *= o - b0;}
b0 = o;

*out1 = dofilter(o - t + denormal);
phase += w;

 Visibly, this declares some variables, calculates oscillator phase and frame read position, reiterates a procedure to sum a
couple wavelengths worth of impulse data, performs a transition point antialiasing method, and passes to the filter and
output. But as you can see, the entire function is only this much code. Adding in linear crossfading of two noise tables is
only a few more lines.

 Note that five wavelengths (limit 12 to 8) is a pretty arbitrary place to stop processing, but it keeps a clutter param off
the GUI.. calculating less lengths is more efficient (I was getting 2.5% cpu with 3 cycles..) ..more lengths would obviously
include more low frequency information. The transition point antialiasing handles any truncation clicks.

 There are several methods used in cepstral processing for determining voiced and unvoiced analysis frames. I used a
very simple positive zero crossing count divided by the window length and scaled. Maybe not perfectly accurate but it
seems to work well enough for speech resynthesis to be intelligible.

 In simple language, here is my procedure to derive the cepstral impulse. My FFT code is adapted from dspguide. Several
terms can be precomputed and translated from intelligible to efficient formats.

 The audio signal is placed in both channels sent to FFT to produce spectrum. Take the magnitude, log10 it, place in both
channels, FFT to produce cepstrum. Zero bins above lifter (you don't get a lot of filter bins). FFT to return to spectrum.
Translate scale from log10 (multiply by 1/n, then pow(10,this_sample), result in real, negative result in imaginary, FFT
again, scale by -4/n, there's your audio impulse. Envelope just the first few couple samples to reduce aliasing.

 Filters here are from source by Robin Schmidt and neotec.

