
lifter vst
cepstral impulse resynthesis build 2 by xoxos

what
 The cepstrum divides resonances from source signals, described as "deconvolution of the source and filter". It is used to

create impulses containing spectral information. Triggering these impulses at audio rate creates oscillators with the spectral

contour from the cepstral analysis.

 The limitation of this method is that it produces the harmonic series. It is useful for emulating instruments with the

series of harmonic partials, but not for instruments with inharmonic or absent partials, like bells or clarinet. The

advantages of impulse resynthesis are efficiency and immediacy (zero latency, every specification is instantaneous).

 After building my initial cepstral impulse synth, kaze, I realised that one could generate a second set of impulses with a

90° phase offset, allowing for complex (2 dimensional) processing, such as frequency shifting, so that the partials could be

expanded or compressed. Predictably, because of the influence of the fundamental pitch, a pure frequency shift is not

possible, as a second set of partials are reflected around the fundamental. But the ability to produce inharmonic partials

significantly improves the utility of the technique.

 As kaze, lifter creates pitched and unpitched oscillators from the cepstral filter data, achieving latency free, efficient

resynthesis with continuous, recallable, instantaneous specification of pitch, phase, spectral shift and pitched/noise signal

balance. Lifter adds side band modulation to this list.

how
 Cepstral vernacular reverses the first part of signal processing terms, eg. quefrency, liftering and alanysis. The lifter

parameter specifies the separation of filter and source. Lower values have less spectral resolution, higher values start to

bias the resulting spectral contour with the source.

 Spectra of the wavefile are taken at 128 periodic points, producing better resolution with shorter files. The pitched

oscillator crossfades between antialiased impulses. The unpitched oscillator uses tables of 16384 samples, which would

repeat about 2.69 times a second at 44.1kHz with no spectral shift. This may produce overt repeating but its very

computationally efficient.

 Preparation of each frame requires four or five fourier operations, depending on if noise is opted. A total of 128 frames

means some cpu lock up is expected during resynthesis (some part of a second on my single core). This occurs when the

lifter parameter is moved (eg. don't drag it slowly), and when the wavefile is loaded, which takes a while.

sidebands
 Sidebands are generated as a function of source frequency plus
modulation frequency. A fixed modulation frequency produces the
same rate of harmonic beating or phasing regardless of the
source frequency.

 Even numbered sideband settings suppress the source
frequency. Different modes are useful in emulation of different
acoustic systems. Two "2 band" options select emphasis of the
upper or lower band, reflecting upward and downward shifts
reflected around the fundamental.

scale
 I implemented a "correction" function that would retune the
oscillator to the lower or upper sideband. The result of this was
that changing the sideband frequency did achieve an expansion
or compression of the partials, of course still generating the extra
set of partials. My "fundamental correction" method had an
unforeseen side effect in that it also rescaled the spectral contour
as well as the partials.

 The result of this is that the gui scale function, which appears
to be a single button below the sideband frequency control,
actually pages between three modes - no correction, "expand,"
and "contract," depending on whether the lower or upper
sideband is used. There is no label or gui readout for which mode
 it is in, but in use, the sideband frequency will have a
dreamatically diffferent effect. It mak teh interesting sound.

help i don't know
 There are no presets because wavefiles take a very long time
to load for some reason (about the same length as the sample).
After the sample is loaded, the oscillator will play the frame at
the read position. If this position in the file is silent, no sound
will be produced.

 In order to play the file through conventionally, a linear modulator must be applied to the read parameter. The easiest
way to do this is to use a linear lfo (contour 0). Set gate sync for the lfo on, so it will play in the same place when you hit
a key, and use a mod assign to send it to the read parameter. Change the speed of the lfo to change the playback rate.
Change the lfo phase param to change the starting position. Chances are you're listening to it playing backwards, so invert
the mod assign.

 This synth was developed very quickly to make it available in some form and allow me to do other things. The basic
method can perform well for some emulative applications (which is why the simpler build, kaze, is still useful). Some parts
are unrefined in comparison to the expectations of users accustomed to commercial development, eg. as consonants are
very brief, they will lose resolution with longer files since frames are analysed at 128 equally spaced points. Prepping
wavefiles may be worthwhile. The analysis for pitched versus unpitched signal components is also very simple, so in use,
balance of noise versus oscillator may need to be "worked with". Ultimately this thing can throw out a lot of dynamic
timbre.

 The use of complex signals also avails stereo output. With lower sideband settings, this will produce a rotating effect. If it
is too cyclic, use a random lfo to very subtly modulate the sideband frequency, very nice. Very small sideband settings can
"warm" or "naturalise" integer harmonics, to sound less vocodery.

